Towards a Trajectory Planning Concept: Augmenting Path Planning Methods by Considering Speed Limit Constraints

نویسندگان

  • Lukás Chrpa
  • Hugh Osborne
چکیده

Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known A* and state-of-the-art Theta* and Lazy Theta* path planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A*, Theta* and Lazy Theta* algorithms is also experimentally evaluated. We compare i) the augmented and basic A*, Theta* and Lazy Theta* algorithms and ii) optimizing of augmented Theta* and Lazy Theta* for distance (the trajectory length) and duration (time needed to move through the trajectory).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory Planning on Grids: Considering Speed Limit Constraints

Trajectory (path) planning is a well known and thoroughly studied field of automated planning. It is usually used in computer games, robotics or autonomous agent simulations. Grids are often used for regular discretization of continuous space. Many methods exist for trajectory (path) planning on grids, we address the well known A* algorithm and the state-of-the-art Theta* algorithm. Theta* algo...

متن کامل

Abstract Augmented Lazy Theta*: Applying Graph Abstractions to Trajectory Planning with Speed-Limit Constraints

Augmented Lazy Theta*: Applying Graph Abstractions to Trajectory Planning with Speed-Limit Constraints Peter Gregory Digital Futures Institute School of Computing Teesside University, UK [email protected] Lukáš Chrpa PARK research group School of Computing and Engineering University of Huddersfield, UK

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

Trajectory Planning in Dynamic Workspaces: a `state-time Space' Approach Trajectory Planning in Dynamic Workspaces: a `state-time Space' Approach

| This paper addresses trajectory planning in dynamic workspaces, i.e. trajectory planning for a robot subject to dynamic constraints and moving in a workspace with moving obstacles. First is introduced the novel concept of state-time space, i.e. the state space of the robot augmented of the time dimension. Like the concept of connguration space which is a tool to formulate path planning proble...

متن کامل

Smoothed Hex-grid Trajectory Planning using Helicopter Dynamics

Considering Unmanned Autonomous Vehicles (UAVs) the planning tasks mainly consist of finding paths between given waypoints with respect to given constraints. In this paper we developed a path planning system for flying UAVs (VTOLs and CTOLs) built upon Hexagonal grids which also supports simple dynamics (handling with speed). The planning system is additionally supported by a trajectory smoothi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2014